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Abstract

We study exact solutions of the position-dependent effective mass Schrödinger
equation by considering the new solvable nonlinear oscillator that relates to
the isotonic oscillator through the method of point canonical transformations.
We construct exactly solvable potentials by choosing physically important
position-dependent mass distributions. We also provide the energy spectrum
of the bound states and the wavefunctions of the solvable potentials.

PACS numbers: 03.65.Fd, 03.65.Ca, 03.65.Ge, 03.65.Db

1. Introduction

In a recent paper, Cariñena et al [1] considered a non-polynomial one-dimensional quantum
potential representing an oscillator, which can be considered as placed in between the harmonic
oscillator and the isotonic oscillator, and showed that it is an exactly solvable potential. The
aim of this paper is to obtain new solvable potentials that share the eigenspectrum with that
of the nonlinear oscillator related with the isotonic oscillator by connecting the latter into the
position-dependent effective mass Schrödinger equation (PDMS).

The motivation to do this analysis arises from two reasons. The primary reason comes
from the developments in the study of the PDMS and the secondary one comes from the study of
inverse square type potentials in physics. The contemporary studies have shown that in a wide
variety of physical problems an effective mass depending on the position is of utmost relevance.
To name a few problems we cite (i) effective interactions in nuclear physics [2], (ii) carriers and
impurities in crystals [3], (iii) quantum dots [4], (iv) quantum liquids [5], (v) semiconductor
heterostructures [6] and (vi) in neutron stars [7]. Apart from the experimental analysis, various
theoretical aspects of the PDMS have also been investigated in detail recently; for example,
exact solvability [8], shape invariance [9], quasi-exact solvability [10], supersymmetric or
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intertwining formulation [11], Lie-algebraic approach [12] and Green’s approach [13] have
been studied widely.

The inverse square-type potentials have been broadly studied in physics under different
considerations. For example, it has been shown that they appear in the study of the Bose–
Einstein condensates and cosmological models [14–16], and in the solution of time-dependent
harmonic or anharmonic oscillators [17–19]. Secondly it has been of interest for physicists
for several decades to solve the Schrödinger equation with non-polynomial potentials [20]
due to the interesting properties they admit. For example, the isotonic oscillator potential
(V = ω2

2 x2 + g

2x2 ; ω and g are constants) at the classical level admits periodic oscillations
with the same period [21] (isochronous potential), and at the quantum level it is Schrödinger
solvable and the energy spectrum is equidistant [22]. All these facts motivate us to take up
this problem.

To obtain the new solvable potentials that share the same eigenspectrum with that of the
nonlinear oscillator we relate the underlying Schrödinger equation to the Schrödinger equation
with position-dependent mass. We identify new solvable potentials by using the fact that the
PDMS and Schrödinger equation with a constant mass share the same energy spectrum and
can be transformed into each other through point canonical transformations. In this procedure,
one has to consider an exactly solvable potential as a reference potential and construct the
exactly solvable target potential by choosing a suitable mass distribution. For our studies, we
consider three different mass distributions that are often used in semiconductor physics. The
eigenvalues and eigenfunctions of the target potential can also be obtained in this procedure.

The plan of this paper is as follows. In the following section, we briefly recall the
eigenvalues and eigenspectrum of the newly solvable nonlinear oscillator that is related to the
isotonic oscillator. In section 3, we discuss the method of solving the PDMS. By utilizing
the method, we construct new solvable potentials that share the same energy spectrum with
that of the nonlinear oscillator in section 4. Finally, we present our conclusions in section 5.

2. A new solvable potential

In [1] Cariñena et al have considered the potential

V (y) = 1

2

(
y2 +

8(2y2 − 1)

(2y2 + 1)2

)
(1)

and proved that it is one of the exactly solvable potentials in quantum mechanics. They have
also given explicit forms of the energy spectrum and the wavefunctions for this oscillator.
Consequently, Fellows and Smith have shown that the potential considered by Cariñena et al
is a supersymmetric partner potential of the harmonic oscillator [23].

The potential given above is very closely related with the isotonic oscillator:

Viso(y) = ω2

2
y2 +

g

2y2
, g > 0. (2)

The classical Euler–Lagrange’s equation of (2) is nothing but the Ermakov–Pinney
equation [24]. The classical and quantum dynamics of equation (2) have been discussed
at length in the literature (see, for example, [25] and references therein). Cariñena et al have
considered a generalized version of the potential related to the isotonic oscillator of the form

V0a(y) = 1

2

(
ω2y2 +

2ga(y
2 − a2)

(y2 + a2)2

)
, ga > 0 (3)

2
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with ga being a real positive parameter. The authors have argued that the new additional terms
can be written as the sum of two centripetal barriers in the complex plane

V0a(y) = 1

2

(
ω2y2 + ga

(
1

(y + ia)2
+

1

(y − ia)2

))
, (4)

so it is a rational potential with two imaginary poles symmetric with respect to the origin.
For example, if ga remains constant then when a goes to zero and to ∞ the potential V0a(y)

converges to the isotonic and the harmonic oscillator, respectively.
The authors have considered a particular case, namely, a2 = 1

2 and ga = 2 in (3) and
solved the associated Schrödinger equation, that is

d2ψ

dy2
+

m0

h̄2

(
2E − ω2y2 − 8(2y2 − 1)

(2y2 + 1)2

)
ψ = 0, (5)

and obtained the eigenfunctions in terms of P-Hermite functions, namely

ψn(y) = Nn

Pn(y)

(1 + 2y2)
e− y2

2 , n = 0, 3, 4, . . . , (6)

where the normalization constant is given by

Nn =
(

(n − 1)(n − 2)

2nn!
√

π

) 1
2

, n = 0, 3, 4, . . . (7)

and the P-Hermite polynomials are defined by

Pn(y) = Hn + 4nHn−2 + 4n(n − 3)Hn−4, n = 3, 4, 5 . . . , (8)

where Hn’s are nothing but Hermite polynomials. While solving the Schrödinger equation (5)
the authors have taken h̄, m0, ω = 1 for ease of notation. We also follow the same in order to
make our results compatible with them.

The energy spectrum is given by

En = − 3
2 + n. (9)

The result shows that the ground state ψ0 has an energy E0 which is lower than that of the
pure harmonic case [1].

3. Method of solving PDMS

In this section, we recall briefly the point canonical transformation approach to solve the
Schrödinger equation with position-dependent mass [11, 26, 27]. For a one-dimensional
potential V (y), the time-independent Schrödinger equation with a constant mass is given by

−1

2

d2ψ

dy2
+ V (y)ψ(y) = Eψ(y), (10)

where we have taken h̄ = 1 and the mass m0 = 1. Let us introduce a transformation y → x

through a mapping function y = f (x) and

ψ(y) = g(x)ψ̃(x) (11)

in the Schrödinger equation so that the latter becomes(
1

2

d2

dx2
−

(
g′

g
− f ′′

2f ′

)
d

dx
− 1

2

(
g′′

g
− f ′′

f ′
g′

g

)
+ (f ′)2V (f (x))

)
ψ̃(x) = (f ′)2Eψ̃(x),

(12)

3
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where prime denotes differentiation with respect to x. In the case of the symmetric ordering of
the momentum and mass, the one-dimensional Schrödinger equation with position-dependent
mass is given by

−1

2

d

dx

(
1

m(x)

dψ̃(x)

dx

)
+ Ṽ (x)ψ̃(x) = Ẽψ̃(x). (13)

In our analysis, we consider the function m(x) > 0. This restriction keeps the functions ψ̃(x)

square integrable [28].
Equation (13) can be rewritten explicitly as(

−1

2

d2

dx2
+

m′

2m

d

dx
+ mṼ (x)

)
ψ̃(x) = mẼψ̃(x). (14)

Now comparing equations (12) and (14) one observes that equation (12) is identical to
equation (14) if the following conditions hold, namely,

g(x) =
√

f ′

m
, (15)

Ṽ (x) − Ẽ = f ′2

m
(V (f (x)) − E) − 1

2m

(
g′′

g
− f ′′

f ′
g′

g

)
. (16)

Let us choose f ′2 = m so that equations (15) and (16) now become

g(x) = m− 1
4 (x), (17)

Ṽ (x) = V (f (x)) +
1

8m

(
m′′

m
− 7m′2

4m2

)
. (18)

Let us denote the old potential V (y) as the reference potential and the new potential Ṽ (x)

as the target potential. Since we know the bound state energy spectrum and the wavefunction
of the reference potential, En and ψn(y), respectively, we can now construct the energy
spectrum and wavefunctions, Ẽn and ψ̃n(y), respectively, of the target potential Ṽ (x) from
equations (16) and (18), respectively, that is

Ẽn = En,

ψ̃n(x) = 1

g(x)
ψ̃(x) = m

1
4 (x)ψn(f (x)).

(19)

The normalization of ψ̃n(x) means that [29, 30]∫ ∞

−∞
|ψ̃n(x)|2 dx = 1 = N2

n

∫ ∞

−∞
m

1
2 (x)ψn(f (x))2 dx,

= N2
n

∫ fmax

fmin

ψn(f (x))2 df, (20)

where fmin = f (−∞) and fmax = f (∞). One may note that the normalization constant
in (20) need not be the same as that of the constant mass case. Suppose the lower and
upper limits are −∞ and ∞ respectively as in the constant mass case, then the normalization
constant assumes the same value which can be seen from our first example in the following
section. Suppose the lower and upper limits turned out to be 0 and ∞, then the value of the
normalization constant is increased by

√
2 times. We consider this situation in our second

example. One may also face the situation in which the lower and upper limits of the above

4
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integral do not fall into either of the above categories. In this case, even though the resultant
wavefunctions are square integrable they are not normalizable [29]. For more details about the
normalization constant in the position-dependent mass oscillators, one may refer to [29–31].

For a specific mass distribution m(x), one can get eigenvalues and eigenfunctions without
solving the Schrödinger equation by using the relations (11), (17), (18) and (19). In the
following section, we illustrate the procedure with suitable examples.

4. Applications

In this section, we consider three kinds of position-dependent mass distributions that are
often used in semiconductor physics, choose the nonlinear oscillator potential as the reference
potential and construct the target potential.

4.1. Case 1

In the nanofabrication of semiconductor devices, one observes quantum wells with very thin
layers [32]. The effective mass of an electron (hole) in the thin-layered quantum wells varies
with the composition rate. In such systems, the mass of the electron may change with the
composition rate which depends on the position. As a consequence, attempts have been
made to analyze such PDMS and their underlying properties for a number of potentials and
masses. One such mass profile which is found to be useful for studying transport properties
in semiconductors is given by [6, 11, 32]

m(x) = (γ + x2)2

(1 + x2)2
, (21)

where γ is a positive constant. One may observe that if we take the parameter γ = 1, the
position-dependent mass is reduced to constant mass.

Using the identities y = f (x) and f ′(x) = m
1
2 (x), we obtain

y = f (x) =
∫

m
1
2 (x) dx = x + (γ − 1) arctan x, (22)

so that g becomes (vide equation (15))

g(x) =
√

(1 + x2)

(γ + x2)
. (23)

Here one can also see that γ = 1 then y = x.
Substituting the expression m(x) and its derivatives into (18), we get

Ṽ (x) = 1

2

(
f (x)2 +

8(2f (x)2 − 1)

(2f (x)2 + 1)2

)
+

(γ − 1)(3x4 + 2(2 − γ )x2 − γ )

2(γ + x2)4
, (24)

where f (x) is as given in (22). Again in the choice γ = 1 the target potential Ṽ (x) is reduced
to the reference potential V (y).

From the relations (6), (11) and (19), we can fix the eigenvalues and eigenfunctions for
the potential (24) of the form

ψ̃n(x) = Nn

√
(γ + x2)

(1 + x2)

Pn[f (x)]

(1 + 2f (x)2)
e

−f (x)2

2 , (25)

Ẽn = −3

2
+ n, n = 0, 3, 4, . . . , (26)

5
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Figure 1. The mass (a), target potential (b), wavefunction ψ0 (c), wavefunction ψ3 (d) and
wavefunction ψ4 (e) of Case 1. The solid lines represent γ = 1, the short dashed lines and long
dashed lines represent the cases γ = 1

2 and 2, respectively.

where the function f (x) and normalization constant Nn are as given in (22) and (7),
respectively. In figure 1, we plot the mass distribution m(x) (vide equation (21)),
target potential Ṽ (x) (vide equation (24)) and the wavefunctions ψn, n = 0, 3, 4 (vide
equation (25)) for three different values of the parameter γ , namely γ = 0.5, 1 and 2.
The case γ = 1 corresponds to the constant mass case and is plotted in the form of solid
lines in figure 1. The short dashed and long dashed lines represent the cases γ = 0.5 and
2 respectively for the mass distribution (21). The target potential Ṽ (x) is symmetric and
confining, and the shape of Ṽ (x) becomes sheer as γ increases while keeping the similarity
in its shape to that of the reference potential V (x). The wavefunctions also keep their shape
as that of the source potential.

4.2. Case 2

Now we consider a second mass profile which is found to be useful for studying transport
properties in semiconductors [6], namely

m(x) = 1 + tanh(γ x), (27)

which becomes abrupt as γ becomes large. For γ = 0 the position-dependent mass m is
reduced to the constant mass case. This mass example was also considered by Dekar et al
[33] for a potential that has the same shape of a smooth step. Here we are interested in bound
states.

As we have done in the previous case, first let us fix the mapping function y by using the
identity y = f (x) = ∫

m
1
2 (x) dx which turns out to be

y = f (x) =
(√

2

γ

)
arctanh

(√
1 + tanh(γ x)√

2

)
. (28)

6
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Figure 2. The mass (a), target potential (b), wavefunction ψ0 (c), wavefunction ψ3 (d) and
wavefunction ψ4 (e) of Case 2. The solid lines represent γ = 0, the short dashed lines and long
dashed lines represent the cases γ = 1

2 and 1.5, respectively.

In the present case, we have f (−∞) = 0 and f (∞) = ∞ which in turn modifies the
normalization constant as we pointed earlier. The new solvable potential Ṽ (x) can be derived
by substituting the mass distribution (27) into (18). Doing so, we obtain

Ṽ (x) = 1

2

(
f (x)2 +

8(2f (x)2 − 1)

(2f (x)2 + 1)2

)
+

γ 2(−7 + 6 tanh(γ x) + tanh2(γ x))

32(1 + tanh(γ x))
. (29)

Here one can also note that when γ = 0, the target potential is reduced to the reference
potential. The eigenfunction turned out to be

ψ̃n(x) = Ñn(1 + tanh(γ x))
1
4

Pn[f (x)]

(1 + 2f (x)2)
e

−f (x)2

2 , (30)

En = −3

2
+ n, Ñn =

(
(n − 1)(n − 2)

2n−1n!
√

π

) 1
2

, n = 0, 3, 4, . . . , (31)

where f (x) is as given in (28). In figure 2, we plot mass distribution (vide
equation (27)), target potential (vide equation (29)) and the wavefunctions (vide equation (30))
for three different values of the parameter γ , namely γ = 0, 0.5 and 1.5. Unlike the
earlier cases, for γ > 0, the target potential is neither symmetric nor antisymmetric. The
wavefunctions have no definite parity. Again the solid lines represent the constant mass case,
and the short dashed and long dashed lines represent the cases γ = 0.5 and 1.5 respectively.
Finally, we note here that the wavefunctions ψi, i = 0, 3, 4, given in solid lines differ in size
from those given in the other two cases, namely Cases 1 and 3. This is because of the fact that
the normalization constant in the present case is

√
2 times than that of the other two cases.

7
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Figure 3. The mass (a), target potential (b), wavefunction ψ0 (c), wavefunction ψ3 (d) and
wavefunction ψ4 (e) of Case 3. The solid lines represent γ = 0, the short dashed lines and long
dashed lines represent the cases γ = 1

2 and 1, respectively.

4.3. Case 3

Another important mass profile which has been studied in graded alloys is of the form [34]

m(x) = cosh2(γ x) (32)

so that for γ = 0 one can recover the constant mass case. A graded alloy quantum well,
typically based on AlxGa1−xAs, will provide equispaced levels if the grading function, that is
the variation of the mole fraction x along some direction, is chosen to be parabolic [34]. Such
a design of quantum well structures with some number of equispaced levels enables resonant
interaction at all levels with monochromatic light and fully resonant interaction. We intend to
construct the wavefunctions and energy values for the PDMS with this mass profile.

Repeating the procedure outlined in the previous two cases, we found that the mapping
function turns out to be

y = f (x) =
∫

m
1
2 (x) dx = sinh(γ x)

γ
. (33)

In the present example, we have fmin = −∞ and fmax = ∞.
The associated solvable potential takes the form

Ṽ (x) = 1

2

(
f (x)2 +

8(2f (x)2 − 1)

(2f (x)2 + 1)2

)
−

(
γ 2

16

)
sech4(γ x)(3 cosh(2γ x) − 7). (34)

The eigenfunction becomes

ψ̃n(x) = Nn cosh
1
2 (γ x)

Pn[f (x)]

(1 + 2f (x)2)
e

−f (x)2

2 , (35)

En = −3

2
+ n, n = 0, 3, 4, . . . , (36)

8
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where f (x) and the normalization constant are as given in (33) and (7), respectively. In
figure 3, we plot mass distribution (equation (32)), target potential (equation (33)) and the
wave functions (equation (35)) for three values of the parameter, namely γ = 0, 1

2 and 1. In
this case, one can see that the target potential and the wavefunctions retain their shape as that
of the original potential.

5. Conclusion

In this paper, we have considered the newly discovered Schrödinger solvable nonlinear
oscillator that is related to the isotonic oscillator as the reference potential and obtained a
class of exactly solvable potentials by transforming it into the PDMS. For our illustration,
we have considered three different types of mass distributions which are often considered
in semiconductor physics. We have also given bound state energies and corresponding
wavefunctions for all three solvable potentials. As shown in this paper, the source potential
and the target potential share the same bound state spectra.

Interestingly, one can also consider that the mass distribution is an exponential function
of x, that is m(x) = eγ x or a quadratic power in x, that is m(x) = (α + γ x2), where γ and α

are constants. These kinds of mass functions had already been used in the study of confine
energy states for carriers in semiconductor quantum well structures [6]. One may repeat the
analysis given in this paper for the above mass distributions and identify new potentials that
share the same energy spectra as that of the model (1).
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